系统软件层
Triton 通过使用 CUDA Driver API 与底层 GPU 进行交互。具体流程如下:
- Triton 生成的代码将被编译为 PTX(Parallel Thread Execution)代码,用于 NVIDIA GPU。
- 通过 CUDA Driver API(例如
cuModuleLoad
,cuLaunchKernel
等)来加载和执行这些 PTX 代码。
使用 CUDA Driver API 来进行简单的 GPU 内存分配和向量加法计算,示例代码如下:
PTX 文件:
__global__ void vecAdd(float *A, float *B, float *C, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) {
C[i] = A[i] + B[i];
}
}
程序:
#include <cuda.h>
#include <stdio.h>
#include <stdlib.h>
#define CHECK_CUDA_RESULT(res, msg) \
if (res != CUDA_SUCCESS) { \
printf("Error: %s, CUDA result: %d\n", msg, res); \
return -1; \
}
int main() {
CUdevice cuDevice;
CUcontext cuContext;
CUmodule cuModule;
CUfunction cuFunction;
CUresult res;
int N = 512;
size_t size = N * sizeof(float);
// Initialize the CUDA Driver API
res = cuInit(0);
CHECK_CUDA_RESULT(res, "cuInit failed");
// Get the device and create a context
res = cuDeviceGet(&cuDevice, 0);
CHECK_CUDA_RESULT(res, "cuDeviceGet failed");
res = cuCtxCreate(&cuContext, 0, cuDevice);
CHECK_CUDA_RESULT(res, "cuCtxCreate failed");
// Allocate device memory
CUdeviceptr d_A, d_B, d_C;
res = cuMemAlloc(&d_A, size);
CHECK_CUDA_RESULT(res, "cuMemAlloc for A failed");
res = cuMemAlloc(&d_B, size);
CHECK_CUDA_RESULT(res, "cuMemAlloc for B failed");
res = cuMemAlloc(&d_C, size);
CHECK_CUDA_RESULT(res, "cuMemAlloc for C failed");
// Initialize host arrays and copy data to device
float *h_A = (float *)malloc(size);
float *h_B = (float *)malloc(size);
float *h_C = (float *)malloc(size);
for (int i = 0; i < N; ++i) {
h_A[i] = i; // Example values
h_B[i] = i; // Example values
}
// Copy data from host to device
res = cuMemcpyHtoD(d_A, h_A, size);
CHECK_CUDA_RESULT(res, "cuMemcpyHtoD for A failed");
res = cuMemcpyHtoD(d_B, h_B, size);
CHECK_CUDA_RESULT(res, "cuMemcpyHtoD for B failed");
// Load the compiled PTX module and get the kernel function
const char *kernel_file = "add.ptx"; // Precompiled PTX file
res = cuModuleLoad(&cuModule, kernel_file);
CHECK_CUDA_RESULT(res, "cuModuleLoad failed");
res = cuModuleGetFunction(&cuFunction, cuModule, "_Z6vecAddPfS_S_i"); // Adjust if needed
CHECK_CUDA_RESULT(res, "cuModuleGetFunction failed");
// Set kernel parameters and launch the kernel
void *args[] = { &d_A, &d_B, &d_C, &N };
res = cuLaunchKernel(
cuFunction, // Kernel to launch
(N + 255) / 256, 1, 1, // Grid dimensions
256, 1, 1, // Block dimensions
0, // Shared memory size
0, // Stream
args, // Kernel arguments
NULL // Extra options
);
CHECK_CUDA_RESULT(res, "cuLaunchKernel failed");
// Synchronize to ensure kernel execution is complete
res = cuCtxSynchronize();
CHECK_CUDA_RESULT(res, "cuCtxSynchronize failed");
// Copy the result back to the host
res = cuMemcpyDtoH(h_C, d_C, size);
CHECK_CUDA_RESULT(res, "cuMemcpyDtoH for C failed");
// Print the results
for (int i = 0; i < N; ++i) {
printf("%f + %f = %f\n", h_A[i], h_B[i], h_C[i]);
}
// Free device memory and destroy the context
cuMemFree(d_A);
cuMemFree(d_B);
cuMemFree(d_C);
cuCtxDestroy(cuContext);
// Free host memory
free(h_A);
free(h_B);
free(h_C);
return 0;
}
结果:
0.000000 + 0.000000 = 0.000000
1.000000 + 1.000000 = 2.000000
2.000000 + 2.000000 = 4.000000
3.000000 + 3.000000 = 6.000000
4.000000 + 4.000000 = 8.000000
5.000000 + 5.000000 = 10.000000
...
510.000000 + 510.000000 = 1020.000000
511.000000 + 511.000000 = 1022.000000